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J. Phys. A: Math. Gen. 13 (1980) 2985-2994. Printed in Great Britain 

Axially symmetric solutions in general relativity 

K C Dasi 
Department of Physics, The University of Burdwan, Burdwan, India 

Received 19 November, in final form 21 January 1980 

Abstract. Two new sets of asymptotically flat and functionally non-related electrovac 
solutions representing the external field of an isolated mass carrying electric charge, dipole 
and higher multipole moments are presented and a stationary vacuum metric is generated. 

1. Introduction 

Long ago, Weyl (1917) obtained a class of axially symmetric electrovac solutions in 
which the gravitational and electrostatic potentials are functionally related. Another 
class of solutions without spatial symmetry but with functionally related potentials was 
found by Majumdar (1947) and by Papapetrou (1947). Bonnor (1966) obtained a 
solution without functionally related potentials, referring to a massive electric dipole by 
transforming the Kerr (1963) stationary vacuum metric into an electrostatic space- 
time. This procedure (henceforth referred to as the parameter change technique) has 
since been extended to the Tomimatsu and Sato vacuum solutions (1973) for S = 1-4  
by several authors (see e.g. Wang 1974, Das and Banerji 1978 etc) to yield some 
extremely complicated space-times. 

Recently Chandrasekhar (1978) has reformulated the field equations of an 
axially symmetric stationary vacuum problem in terms of two real functions instead of 
the complex formalism of Ernst (1968) and will display a derivation of Kerr’s solution 
by a simple method, better than any of the formulations considered so far. Chan- 
drasekhar’s work has also provided new stationary solutions generated from the old 
ones, but these have not yet been looked into in great detail. 

Bonnor (1979), using Chandrasekhar’s formula (1978) has again obtained a new 
class of functionally non-related electrovac solutions representing the exterior field of a 
body with mass, electrostatic monopole and higher multipoles from the Kerr metric. 
This procedure will henceforth be referred to as the C-B technique. 

Kinnersley and Chitre (1978a, b) have given a new stationary axially symmetric 
vacuum metric different from the metric of Tomimatsu and Sato (1973) for S = 2. In 
this paper we have utilised Chandrasekhar’s technique of obtaining a new stationary 
vacuum solution from the solution of Kinnersley and Chitre (1978a) and also obtained 
two new sets of functionally non-related axially symmetric electrovac solutions by the 
C-B technique. All the electrovac solutions generated are asymptotically flat. 

In 0 2 Chandrasekhar’s prescription is briefly outlined and a simple method of 
obtaining real solutions of Chandrasekhar’s equations from the known solutions of 
Ernst’s complex formalism is discussed. A new electrovac solution is generated in 0 3 
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from the stationary vacuum solution of Kinnersley and Chitre (1978a) and compared 
with the corresponding electrovac solution obtained by the parameter change tech- 
nique. In § 4 a new electrovac solution is obtained from the T-S, S = 2 stationary 
vacuum solution by the C-B technique and compared accordingly with the known 
electrovac solution obtained by the parameter change technique. New stationary 
vacuum metric is generated from the solution of Kinnersley and Chitre (1978a) by 
Chandrasekhar’s prescription (1978) in D 5 .  The paper ends with a discussion of using 
different techniques for the same generating function. 

2. Chandrasekhar’s technique 

Chandrasekhar (1978) chose the line element in a more general form and derived the 
Kerr metric directly, verifiable at all stages. Secondly he suggests a method for the 
generation of explicit classes of exact solutions and gives an example of the above class. 
We are concerned particulary with the new method here. 

Chandrasekhar’s line element is written as: 

ds2 = - exp(2v) dt2 + exp(2$)(dq - w dt)2 + e x p ( 2 ~ ~ ) ( d x ~ ) ~  + exp(2u3)(dx3)’ (2.1) 

where cp denotes the azimuthal angles (in the equatorial plane) and x2( = r )  and x3( = 8) 
are the two remaining spatial coordinates. In equations (2.1) U, 4, U,  u2 and u3 are by 
the assumptions of stationary and axisymmetry, functions of x2  and x3 only. With 
suitable transformation Chandrasekhar finally writes the line element (2.1) in the 
following form 

ds2 = (At3)1’2&(dt2) +x-’(d+ - o dt)2} + A-’’’ exp(u2 + u3){(dr2) + A(de2)} 

$(X + Y){(m,r),r + (aX,u),u} = A ( x , r l 2  +S(x,u)’, 

$(X+ Y){(AY,r),r+(SY,u),u}= A(Y,r)2+S(Y,u)2* (2.4) 

(2.2) 

which reduces the field equations into 

(2.3) 

Definitions of the variables 

x = x + w ,  Y = x - o ,  U = cos 8, All2 = exp(u3 - U?) 

S = l - c ; ,  x=exp(-$+v)  

where U:! and u3 are determined by quadrature. This approach by Chandrasekhar has 
the advantage that it does not initially assume the cylindrical symmetry of canonical 
coordinates. 

A convenient form of equations (2.3) and (2.4) which enables one to find some 
solutions from solutions of the Ernst equation is obtained by the transformations: 

2 (2.5) 

x = (l+F)/(l -F) Y =(1 +G)/(1 -G) 

and 

7 = ( r  -M)/(M’ - u2)1’2 A = ( M 2  - a 2 ) ( ~ ’  - 1) (2.7) 

where 77 and U are easily identified as the spatial coordinates x and y in the prolate 
spheroidal coordinate system. 
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Thus once we obtain the solution for F and G of equations (2.8) and (2.9), the metric 
(2.2) is solved. This is a new class of solution which results from Chandrasekhar’s new 
formalism. Furthermore, it has been shown by Bonnor (1979) that the solution of 
equations (2.8) and (2.9) entails also the exact solution of axially symmetric static 
electrovac fields. Equations (2.8) and (2.9) are then of fundamental importance and 
Chandrasekhar obtained the solution of (2.8) and (2.9) from the Ernst equation by 
simple inspection. We also require (08 3 , 4 ,  5 )  the solutions of equations (2.8) and (2.9) 
in a different form from that of Chandrasekhar and therefore give in the following, the 
mathematical basis for directly obtaining the solution of the above two equations if we 
know the solution of the Ernst equation in the form 

(2.10) 

Actually the T-S solutions for S = 1-4  and the Kinnersley and Chitre solution (1978a) 
are reducible to the form (2.1G). 

5 = fb,  y ,  4 )  + is4 (x, Y ,  4) ,  (4 is a const). 

2.1. Method of obtaining solutions 

Ernst’s (1968) celebrated equation is written as: 

(1 -55*){[(x2- 1 ) 5 x l , x  +[(I - Y2)5yl ,y l  = -25*[(x2- 1)512 + (1 - Y ’ ) 5 3 .  (2.1 I) 
Separating equation (2.1 1) into real and imaginary parts when 5 = f + i q 4  we get 

(1 - f ’ -4 ’4 ’ ) { [ (X2-  l ) f x l , x  +[(I  - Y 2 ) f Y l ,  , Y }  

= - 2f[(x ’ - NfZ - 9 %: 1 + (1 - Y 2)(f; - q24; 11 
+ 4(id24[(X2 - 1 ) f X d X  + (1 - Y 2 ) f Y 4 Y  I ,  (2.12) 

(1 - f 2  - 4’4’){[(x2 - 1 ) 9 X l , X  +[(I - Y 2)4Y1,Y} 

= -4f[(X2 - 1)fx4, + (1 - Y ’)fY9,1 +24[(x2 - w’: -4’43 
+ ( I  - Y 2 ) c f :  -42431.  (2.13) 

Similarly writing F = f’ + k 4 ’  and G = f’ - k 4 ’  (k  = const) equations (2.8) and (2.9) 
reduce to two independent equations. 

(1 - f 2  + k24’2 ) { [ (X2  - 1)f:l.x + [(I - Y Y Y  l , Y }  
= -2f’[(X2-l)(fi2 +k24:’)+(1 -y’)(ff + k 2 4 ; ’ ) ]  

+ 4k24’[(x2 - 1)f:4: + (1 - Y ’Y:4 :I 
(1 -f”+ k 2 4 ’ 2 ) { [ ( ~ z  - l )k4LL +[( I  - Y ’)k4i:I,,l 

= - 4kf’[(~ ’ - l)f:c$ + (1 - y 2 ) f : 4  I] 
+2k4’[(x2-1)(fL2 + k 2 ~ : 2 ) + ( n - y 2 ) ( f ; 2  + k 2 9 3 ] .  (2.15) 

(2.14j 

A comparison shows that the two pairs of equations (2.12) and (2.13) and (2.14) and 
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(2.15) are related to each other in the same way as that of the two pairs we encountered 
in the parameter change technique (Das and Banerji 1978, equations (5-6) and (8-9)).  
Thus we can get f’ and q5’ from f and q5 respectively by changing all the iq’s present in f 
and q5 into k. 

F=f’+qq5’ and G z f -qq5’ .  (2.16) 

This is found to be true in the case of T-S, S = 1 - 4  solutions and also in Kinnersley and 
Chitre’s solution (1978).  No intuition or inspection is then necessary to obtain real 
solutions of F and G from the complex solutions of Ernst’s equation. 

3. The new electrovac solutions 

Here we use Bonnor’s (1979) procedure modified whenever necessary. The line 
element of axially symmetric electrovac space-times may be written as: 

ds2 = -eA (du2+dOZ) - CY-’ A2dcp2+ (Y’ dt2 (3 .1)  
where x 1  = U, x 2  = 8, x3 = cp and A,  A, (Y and 4 (defined later) are functions of U and 8 
only. The equations to be solved are those of Einstein-Maxwell theory in the absence 
of matter 

Rik = 2FqFk, - $gikFabFab (3.2) 
where Rik is the Ricci tensor and f l k  is the electromagnetic tensor which satisfies 
Maxwell’s equations 

(3 .3a)  

(3 .3b)  

In the electrostatic problem all variables are independent of the time t ( = x 4 )  and (3 .3a)  
is satisfied if we take 

1 2 3  Fik = ki;k- kk;i, ki = 844 (x ”) ( x ” = x  , x  , x  ) 

q5 being the electrostatic potential. The entire solution is determined by two equations; 
equation (44)  of (3 .2)  and the equation for i = 4 of (3 .3b)  (Bonnor 1979). Taking linear 
combinations of those and putting 

X = ( Y + 4  Y=(Y-4  (3.4)  
we obtain two equations equivalent to the two given by Chandrasekhar. 

( X  + Y ) V 2 X  = 2 v x v x  

( X +  Y ) V 2 Y  = 2 V Y V Y .  

(3 .5a)  

(3 .5b)  

Once X and Y are found, the function A in ( 3 . 1 )  is obtained up to an additive constant 
by other field equations (3.2) (Bonnor 1953). Choosing U and 8 to be prolate 
spheroidal coordinates defined by 

q = cosh U, U = COS e (3 .6)  
and transforming X and Y into F and G as given in equation (2 .6)  we recover the two 
fundamental equations (2 .8)  and (2 .9)  which determine uniquely the electrovac metric 
( 3 . 1 )  as well as the new stationary metric (2 .1) .  For monopole solutions, suggested 
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transformations (Chandrasekhar 1978) of X and Y as 

X - P X ( l + c ’ X ) ,  Y+Y/(l-C‘Y) 

2989 

(3.7) 

are also taken into consideration whenever necessary. 

3.l. The solutions 

Kinnersley and Chitre (1978a, equation (13)) have recently given a stationary axially 
symmetric solution of Einsteins equation and have claimed that their solution is new 
and different from the 7‘4,s = 2 solution. In Ernst’s notation their solution is given by 

i x 4  - I) - 2ipxy(x2 + y 2  - 2 )  - p 2 ( x 2  - y2)’ 
9 p = const. (3.8) 2x ( x 2  - 1) + 2ipy ( x  - y r =  

Now, using the technique discussed in 0 2, F and G can be written as: 

( x 4 -  1) -22pxy(x2+ y 2  -2) + p 2 ( x 2 - y 2 ) 2  
2 x ( x 2 - l ) + 2 p y ( x 2 - y 2 )  

( x 4  - 1) + P 2 ( X 2  - y 2 ) 2 +  2Pxy(x2 + y 2  - 2)  
2x (x2  - 1) - 2 p y ( x Z  - y 2 )  

F =  

G =  

a and q5 come out to be 

a = $(a2 - a I ) (  1 - F G ) /  (a a2 + a ? G + a iF  + a 1 a2FG) 

4 (a l+a2)+2alG+2a2F+(al+a2)FG 
a l a 2 + a : G + a ~ F + a l a 2 F G  2 

where 

c’+ 1 = a l  and c ’ - 1 = a 2  ; 

(3.9) 

(3.10) 

(3.11a) 

(3.11b) 

(3.12) 

c’ is an arbitrary constant in the transformation equation (3.7). 
The electrovac solution ( 3 . 1 1 ~  and 3.11b) is obtained by the C-B technique. With 

the replacement of actual values of F and G it may appear that a certain common 
constant is present in both the expressions for a and q5. This can be removed by the 
obvious transformation, t = (const)-’t’ and q5 = (const) 4‘. Moreover, q5 is always 
present in the field equations (3 .2)  and (3.3) as the derivatives, so we are at liberty to 
introduce another arbitrary constant in the expression for 4. These two are necessary 
for making a 2  tend to unity and q5 tend to zero at spatial infinity. Asymptotic 
expansions for a and 4 are as follows: 

( 3 . 1 3 ~ )  

(3.13b) 

The asymptotic expansions may also be written in terms of spherical coordinates r, 6 
and Q by means of the transformation, 

I x = r - m / 2 ,  y = COS e (3.14) 
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where 1 and m are constants. The above new solution is asymptotically flat and refers to 
a three-parameter solution (c, 1 and p )  exterior to a charged massive body with 
monopole moment and higher multipoles; the charge-to-mass ratio comes out to be 

elm = 2C’/(Ct2+ 1). (3.15) 

It is interesting to note that when c’ = 0, the monopole term in the expansion of q5 
vanishes and we obtain the two-parameter dipole solution. The parameter-change 
technique applied to 9quation (3.8) also gives ran asymptotically flat electrovac solution 
which is new and which has not been fcund so far. In the following we therefore present 
such a solution obtained from equation (3.8). 

The parameter-change technique is now well known in the literature (for details see 
Das and Banerji, 1978) and therefore only a synopsis of the same is given. The result is 
new and interesting. 

If the stationary metric 

ds2 = -e-“[e2”(dp2 +dz2)  + p 2  dq2]+e”(dt  - U  dq)’ (3.16) 

is known, the corresponding electrovac metric 

can be solved by changing a certain constant present in the solution of (3.16) with a 
definite rule discussed by Das and Banerji (1978). The two pairs of equations in prolate 
spheroidal coordinates corresponding to the stationary and electrovac problems 
respectively show a formal similarity except for a change of sign as shown in the 
following. 

where U and S are the metric functions in equations (3.16) and (3.17); 4 and 4, the twist 
and electrostatic potential respectively. 

The electrovac solution corresponding to metric (3.17) is derived Ercm Minnersley 
and Chitre’s stationary solution by the parameter change technique and written below. 

= 1 -4(D/E) ,  It = 4PY (FIE) (3.21) 

where 

2 2  2 D = x(x2-  l ) ( (x + 1)’(x2- l ) + p z ( x 2 - y 2 ) 2 } + 2 p  y (x -y2)(x + l j ( x 2 - 2 x  +y2), 

E; = (2 - y2){(x + 1)2(x2- 1) +P2(X2 - y 2 y } +  2x(x2 - l ) ( x  + 1)(x2 - 2x + y2). 

~ = ~ ( x + l ) 2 ( x 2 - 1 ) + p 2 ( x 2 - y 2 ~ 2 } 2 - 4 p 2 y 2 ( x + 1 ) 2 ( x 2 - 2 x + y 2 ) 2 ,  (3.22) 
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The above stated electrovac solution is a new, functionally non-related asymptotically 
flat dipole solution. With the transformation (3 .14 )  its asymptotic expansion can be 
given as (see metric (3.1)) 

81 1 4 1 { 8 1 - m ( 1 + p 2 ) }  1 
1+p2 r (1 + P 2 ) 3  r 

e2a = I - -  -+ - - i + ~ ( r - 3 ) +  . . . 

4 p ( 3 + p 2 ) 1 2  cos 0 
(1 +p2)’ r2  

+ o(r-3) + . . . 4 =  (3 .23)  

Thus this solution represents a source of mass 4 1 ( 1 + p 2 )  and a dipole moment 
4p(3 + p 2 ) 1 2 / ( 1  +p2)’. When p = 0, the electrostatic potential vanishes and we get 
Weyl’s static vacuum solution of the Einstein equation for S = 2 as in the case of the 
electromagnetic analogue of the T-S, 6 = 2 solution. Directional singularity at the 
poles x = 1, y = * 1 is already present in the Weyl static metric and the directional 
properties of the metric (3 .21)  is not much different from the T-S metric studied by 
Economou (1976)  and Diaz (1976) .  

All the solutions generated either by the C-B technique or the parameter-change 
technique are functionally non-related and well behaved at spatial infinity i.e. g44 tends 
to unity and the electrostatic potential vanishes. When the same generating solution of 
Kinnersley and Chitre is taken as input, the output electrovac solution by the C-B 
method refers to the exterior field of a massive body with electrostatic monopole and 
higher multipole moment whereas the parameter-change technique entails more 
complicated fields of a massive body with dipole and higher multipole moments. 

4. A second set of new electrovac solutions 

The method of obtaining electrovac solution by the C-B procedure or the parameter 
change technique has been discussed in detail in the preceeding sections, we therefore, 
only quote the results. 

4.1. C-B method 

The Kerr solution, rediscovered by Ernst is the S = 1 member of the T-S family. From 
the 8 = 2 solution of the T-S solutions we obtain F and G as described in 8 2 .  

( p 2 x 4  - q 2 y 4  - 1) - 2pqxy (x2 - y 2, 

2px(x2  - 1) + 2qy(y2  - 1) 
F =  

( p 2 x 4  - q 2 y 4  - 1 )  + 2pqxy (x2 - y 2, 
G =  9 ( p 2 - q 2 )  = 1, (4 .1 )  2px(x2  - 1) - 2qy(y2  - 1) 

and a lengthy but straightforward calculation shows that 

a2-a1 ( c 2 - d 2 - a 2 + b 2 )  
2 a l a z ( c 2 - d 2 + a 2 - b 2 ) + ( a :  +a:)(ac + b d ) + ( a :  - a ; ) ( b c + a d )  

1 ( a l + a z ) ( C 2 - d 2 + a 2 - b 2 ) + 2 ( a l + a 2 ) ! a c + b d ) + 2 ( a l - a 2 ) ( b c + a d )  
a l a z ( c 2 - d 2 + a 2 - b 2 ) + ( a :  +a;) (& +bd)+ (a: -aZ)(bc +ad)  

a=- 

(4 .2 )  (b =- 
2 
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where 

a = p 2 x 4 - q 2 y 4 - 1  b = 2pqxy(x2 - y 2 )  

c = 2 p x ( x 2 - 1 )  d = 2 q y ( y 2 - 1 )  

a1 = c ’ +  1 a2= c ’ -  1 
c’ being the constant contained in the transformation (3 .7) .  

The asymptotic expansions of a and q5 are given in the forms, 

( 4 . 3 )  

(4 .4b )  

where suitable transformations and addition of a constant in the expression for (b have 
been taken into consideration to make a and C#I well behaved at spatial infinity (see 
metric (3 .1 ) ) .  

The asymptotic behaviour of (4 .2 )  shows that the solution is asymptotically flat at 
spatial infinity and corresponds to the three-parameter monopole solution, evident with 
the transformation (3 .14 ) .  The charge-to-mass ratio is not different from equation 
( 3 . 1 5 )  i.e. the electrovac solutions obtained from Kinnersley and Chitre’s solution or 
the T-S, S = 2 solution have the same charge-to-mass ratio. 

4.2. The parameter-change technique 

Wang (1974)  obtained an electrovac solution from the T-S, S = 2 solution incorrectly. 
Das and Banerji (1978)  corrected and utilised this for generating further exact 
solutions by Kinnersley’s transformations. Here we present the electrovac solution as 
presented by Das and Banerji. 

a = A / B ,  (b = D / B  (4.5) 

where 

A =p4( , y2 -  1 ) 4 + q 4 ( 1  - y 2 ) 4 + 2 p 2 q 2 ( x 2 -  i ) ( i  - y2)c2 (x2-  i12 

+ 2( 1 - y2)’ + 3(x2  - 1)(1- y 2 ) ]  

B = [ p 2 ( x 2 +  1)(x2 - 1 )  + q 2 ( y 2  + l ) ( y 2 -  1) + 2px(x2  - l)]’ 

- 4 q 2 y 2 [ p x ( x 2 - 1 ) + ( p x  + 1 ) ( 1 - y 2 ) I 2  

D = -4qy (1 - y’) - 4 p 2 q [ ( x 4 y ) (  1 - y 2 )  + 2x2y  (x’ - l ) ( x Z  - y 2 ) ]  - 4q3y5(1  - y 2 ) .  

The asymptotic expansion of (b refers to the dipole solution. Thus this can be regarded 
as the static field of an electric and magnetic dipole 

q5 = 8 q y / p 2 x 2 +  . . . (4.6) 

The solution has asymptotic flatness and in the limit q = 0, reduces to the Weyl metric 
with 8 ’  = 28, where 6‘ is the Weyl parameter. 

In closing this section, one important point deserves attention that the parameter 
change technique generates solutions corresponding to massive electric/magnetic 
dipole whereas the C-B technique generates massive monopole solution. However, it 
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is seen that F and G obtained directly from the T-S family (8 = 1-4) do not give a 
monopole solution unless the transformation suggested by Chandrasekhar (3.7) is used. 
Bonnor (1979) obtained the monopole electrovac field from the solutions of equations 
(3.52 and b) without taking F and G directly from Kerr’s solution. It is seen that taking 

F = -px  - qy and G = - p x + q y  (4.7) 
directly from Kerr’s solution according to the rule (2.16) we fail to obtain the monopole 
term in the expansion of the electrostatic potential 4. But the transformation (3.7) 
applied to (4.7) gives the monopole solution as shown below: 

2 (1+d2)  1 2 4c’ qy q 2 y 2  
1-d2 p x  p x 1 4 p  x p x 

f f = l -  2 2 + - -  2 2 + 2 + .  . . 

. . .  4 =I-- 4c’ 1 1 1 + 3Cf2 + 2(1+ c’ ’) ]  + 

1 - d 2 p x  p 2 x 21 2qYcl(c’2 -1) d2-1 

The ratio of e lm comes out to be 

2c’/(l +d2) .  

This solution is in some sense linked with Bonnor’s solution (1979). 
(4.9) 

5. The stationary solution 

In 9 2 it is shown how two functions ,y and w obtained from X and Y generate a new 
stationary solution. We obtain below new stationary vacuum fields from the solution of 
Kinnersley and Chitre (1978). 

F and G determined from Kinnersley and Chitre, listed in equations (4.1) give X 
and Y. Again, 

,y =l(X+ Y), w = t ( X  - Y). (5.1) 
Transformation (3.7) applied to X and Y gives a new X ’  and Y’,  and ,y and w derived 
from X ’  and Y’  reduce to the same expressions as for a and 4 listed in ( 3 . 1 1 ~  and 6). 
We therefore refrain from writing out full expressions for ,y and w to avoid repetition. 
From the asymptotic expansion ,y and w it is seen that ,y + 1 and w + 0, at spatial infinity 
according to equations ( 3 . 1 3 ~  and b). The new stationary solution derived from the 
Kerr solution by Chandrasekhar without the transformation (3.7) also shows that 
asymptotically ,y + 1 and w + 0, but w goes more rapidly to zero than the w in (5.1). 
Chandrasekhar’s reformulation of the stationary axially symmetric field equations 
provided a beautiful technique for obtaining a new class of monopole electrovac fields 
but it is not clear at this point how successful his method is for obtaining the physically 
realistic stationary vacuum metric. This point requires a thorough investigation (Sloane 
1978). 

6.  Conclusion 

The two methods, the C-B and the parameter-change technique applied to the same 
generating function give rise to functionally non-related, asymptotically flat electrovac 
solutions representing a massive electrostatic monopole with higher multipole fields in 
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the former and a massive dipole and higher multipole in the latter. The parameter- 
change technique gives more complicated solutions than the C-B method. Solutions 
derived from the C-B technique are simple and physically realistic. Asymptotically 
their behaviour does not have the same relevance to nature. For both the methods to be 
effective we must have exact solutions of the axially symmetric stationary metric to hand 
and certain constants present in the stationary solution have to be changed at a 
particular stage of the derivation. Thus it is expected that the C-B method and 
parameter-change technique are connected to each other by some sort of simple 
transformation which maps the monopole solution to the dipole one and vice-versa. 
This problem may be pursued further by the interested reader. 

No independent functionally non-related solution (i.e. without transforming the 
stationary metric to the electrovac one by some method) of equations (3.5a and 6)  
exists in the literature as yet, so it was not possible to obtain stationary solutions from 
the independent electrovac fields by reverse transformation of any kind. 

It can be seen that any new formulation of the field equations is always fruitful and 
therefore welcome. Chandrasekhar’s recent reformulation is no doubt promising and 
we, in this paper, have shown clearly that this leads to physically interesting and well 
behaved electrovac solutions of the Binstein-Maxwell equations, although no definite 
remark can be made at this moment about this attempt to generate new exact solutions, 
in particular, the stationary one. Xanthopoulos ( I  979) has succeeded to some extent in 
exploring the possibilities. 
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